浅谈阿基米德螺线 - 基础数学 我爱数学网-数学爱好者的家园-中国专业化的数学论坛之一

我爱数学网-数学爱好者的家园-中国专业化的数学论坛之一

查看: 493|回复: 2

[几何] 浅谈阿基米德螺线

[复制链接]

120

主题

331

帖子

2037

积分

初中二年级

Rank: 4Rank: 4

积分
2037

最佳新人活跃会员

发表于 2014-10-23 12:04:12 | 显示全部楼层 |阅读模式
浅谈阿基米德螺线

很多人都知道飞蛾扑火这个故事。但是,为什么飞蛾会这么执着地扑向火光呢?这要从它的祖先谈起。飞蛾的历史远比人类悠久。在亿万年前,没有人造火光,飞蛾完全靠天然光源(日光、月光或星光)指引飞行。由于太阳、月亮、星星距离地球都很远,它们发出的光线照到地球上可以认为是平行直线。当飞蛾直线飞行时,它在任何位置的前进方向与光线的夹角都是一个固定值(如图1)。可是,如果光源离得很近,不能将它们发出的光线看作平行光时,飞蛾再按照固有的习惯飞行,飞出的路线就不是直线,而是一条不断折向灯光光源的螺旋形路线(如图2)。这在数学上称为阿基米德螺线。通俗的说,阿基米德螺线就是既作匀速转动又作匀速直线运动而形成的轨迹。举一个形象一点的例子:时钟上的指针在作匀速转动,假如有一只小虫子从时钟的中心,沿指针作匀速爬动,那么虫子最终走出的轨迹就是阿基米德螺线(如图3)。

1.阿基米德螺线简介
1.1阿基米德简介及螺线的发现
阿基米德 Archimedes(约公元前287~前212),古希腊伟大的数学家、力学家。他公元前287年生于希腊叙拉古附近的一个小村庄.11岁时去埃及,到当时世界著名学术中心、被誉为“智慧之都” 的亚历山大城跟随欧几里得的学生柯农学习,以后和亚历山大的学者保持紧密联系,因此他算是亚历山大学派的成员。
公元前240年,阿基米德由埃及回到故乡叙拉古,并担任了国王的顾问.从此开始了对科学的全面探索,在物理学、数学等领域取得了举世瞩目的成果,成为古希腊最伟大的科学家之一.后人对阿基米德给以极高的评价,常把他和牛顿、高斯并列为有史以来三个贡献最大的数学家。
    据说,阿基米德螺线最初是由阿基米德的老师柯农(欧几里德的弟子)发现的.柯农死后,阿基米德继续研究,又发现许多重要性质,因而这种螺线就以阿基米德的名字命名了.
1.2阿基米德螺线的定义及方程
1.2.1《论螺线》中阿基米德螺线的定义
阿基米德螺线,亦称“等速螺线”。螺线是指一些围着某些定点或轴旋转且不断收缩或扩展的曲线,阿基米德螺线是一种二维螺线。在《论螺线》中,阿基米德给出了如下定义:当一点P沿动射线OP以等速率运动的同时,这射线又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。它的极坐标方程为:r=aθ。这种螺线的每条臂的距离永远相等于2πa。
1.2.2阿基米德螺线定义的不合理之处
当我们在纸上用笔沿着一盘阿基米德螺线形状的蚊香进行描绘时,可以或快或慢或暂停又继续地去画完这条螺旋线,是不会有“等速率” ﹑“等角速度”感觉的。实际上阿基米德螺线是动点“旋转”与“直线”两种运动同步、按比例合成的轨迹线。“同步”意味着“旋转”与“直线”两种运动步调一致。即:你动我动,你快我快,你慢我慢,你停我停。“同步”可以包含“旋转”与“直线”两种运动的“等速度”,而“等速度”决不能等同“同步”!因为“同步”容许速度的同步变化,而“等速度”则不允许速度变化。
在螺旋线中,螺距(通常用S表示)是一重要参数,它表示动点绕中心回转一周时,沿直线方向移动的距离。“螺旋比”(简称“旋比”—用ix表示 )即:螺距与一周(360度或2π)的比, ix=S/360度(角度制)或 ix=S/2π(弧度制);任意回转角度下,动点相应运动的直线距离(L)等于该回转角度与“旋比”的乘积。L=ixα(角度制),或 L=ixθ(弧度制)。阿基米德螺线极坐标方程式 r = aθ 中的“a”既是螺线比“ix”;”r” 既是“L”。因为阿基米德螺线的螺线比为常数,一周永远等于360度或2π,所以螺距永远相等,即螺线的每条臂的距离永远相等于 2πa。根据螺距永远相等的特性,我们可将这类螺线称为“等距螺线”或“等旋比螺线”。而不能称之为“等速螺线”。
1.3阿基米德螺线的方程
极坐标系:数学中,极坐标系是一个二维坐标系统。该坐标系统中的点由一个夹和一段相对中心——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示
阿基米德螺旋线的标准极坐标方程: r(θ)= a+ b(θ)
式中:
b—阿基米德螺旋线系数,mm/°,表示每旋转1度时极径的增加(或减小)量;
θ—极角,单位为度,表示阿基米德螺旋线转过的总度数;
a—当θ=0°时的极径,mm。
改变参数a将改变螺线形状,b控制螺线间距离,通常其为常量。阿基米德螺线有两条螺线,一条θ>0,另一条θ<0。两条螺线在极点处平滑地连接。把其中一条翻转 90°/270°得到其镜像,就是另一条螺线。
在极坐标系与平面直角坐标系(笛卡尔坐标系)间转换:
极坐标系中的两个坐标 r 和 θ 可以由下面的公式转换为 直角坐标系下的坐标值
由上述二公式,可得到从直角坐标系中x 和 y 两坐标如何计算出极坐标下的坐标
在x=0的情况下:若y为正数,则θ=90°(π/2radians);若y为负,则θ=270°(3π/2radians).
1.4阿基米德螺线的画法
1.4.1阿基米德螺线的几何画法
    以适当长度(OA)为半径,画一圆O;作一射线OA;作一点P于射线OA上;模拟点A沿圆O移动,点P沿射线OA移动;画出点P的轨迹;隐藏圆O、射线OA&点P;即可得到螺线(如图4)
1.4.2阿基米德螺线的简单画法
有一种最简单的方法画出阿基米德螺线,如图4,用一根线缠在一个线轴上,在其游离端绑上一小环,把线轴按在一张纸上,并在小环内套一支铅笔,用铅笔拉紧线,并保持线在拉紧状态,然后在纸上画出由线轴松开的线的轨迹,就得到了阿基米德螺线。

2.自然界中的阿基米德螺线
2.1自然界中的多种多样的螺线
在浩瀚的自然界中,在千姿百态的生命体上发现了不少螺旋。如原生动物门中的砂盘虫;软体动物门中梯螺科中的尖高旋螺,凤螺科中的沟纹笛螺,明螺科中的明螺,又如塔螺科的爪哇拟塔螺、奇异宽肩螺、笋螺科的拟笋螺等大多数螺类,它们的外壳曲线都呈现出各种螺旋状;在植物中,则有紫藤、茑萝、牵牛花等缠绕的茎形成的曲线,烟草螺旋状排列的叶片,丝瓜、葫芦的触须,向日葵籽在盘中排列形成的曲线;甚至构成生命的主要物质——蛋白质、核酸及多糖等生物大分子也都存在螺旋结构,如人类遗传基因(DNA)中的双螺旋结构。其中,自然界中的砂盘虫化石,蛇盘绕起来形成的曲线等都可以构成阿基米德螺线。

2.2自然界中螺线广泛存在的原因
    拟螺线之所以在生命体中广泛存在,是由于螺线的若干优良性质所确定。而这些优良性质直接或间接地使生命体在生存斗争中获得最佳效果。由于在柱面内过柱面上两点的各种曲线中螺线长度最短,对于茑萝、紫藤、牵牛花等攀缘植物而言,如何用最少的材料、最低的能耗,使其茎或藤延伸到光照充足的地方是至关重要的。而在各种曲线中,螺线就起到省材、节约能量消耗的作用,在相同的空间中使其叶子获取较多的阳光,这对植物光合作用尤为重要,像烟草等植物轮状叶序就是利用形成的螺旋面能在狭小的空间中(其他植物的夹缝中)获得最大的光照面积,以利于光合作用。形成螺线状的某些物体还有一种物理性质,即像弹簧一样具有弹性(或伸缩性)。在植物中丝瓜、葫芦等茎上的拟圆柱螺线状的触须利用这个性质,能使其牢固地附着其他植物或物体上。即使有外力或风的作用,由于螺线状触须的伸缩性,使得纤细的触须不易被拉断,并且当外力(或风)消失后,保证其茎叶又能恢复到原来的位置。螺旋线对于生活在水中的大多数螺类软体动物也是十分有意义的。观察螺类在水中的运动方式,通常是背负着外壳前进,壳体直径粗大的部分在前,螺尖在后。当水流方向与运动方向相反时,水流沿着壳体螺线由直径大的部分旋转到直径小的部分直到螺尖。水速将大大减小,这样位于壳体后水的静压力将大于壳体前端的静压力。在前后压力差的作用下,壳体将会自动向前运动。这样一来,来自水流的阻力经锥状螺线的转化变为前进的动力。除此而外,分布在螺类外壳上的螺线像一条肋筋,大大增加了壳体的强度,也分散了作用在壳体上的水压。
3.阿基米德螺线在实际生活中的应用
3.1最初的应用:螺旋扬水器
为解决用尼罗河水灌溉土地的难题,阿基米德发明了圆筒状的螺旋扬水器,后人称它为“阿基米德螺旋”。 阿基米德螺旋是一个装在木制圆筒里的巨大螺旋状物(在一个圆柱体上螺旋状地绕上中空的管子),把它倾斜放置,下端浸入水中,随着圆柱体的旋转,水便沿螺旋管被提升上来,从上端流出。这样,就可以把水从一个水平面提升到另一个水平面,对田地进行灌溉。“阿基米德螺旋”扬水机至今仍在埃及等地使用。

3.2工程上应用:阿基米德螺旋泵
阿基米德螺旋泵的工作原理是当电动机带动泵轴转动时,螺杆一方面绕本身的轴线旋转,另一方面它又沿衬套内表面滚动,于是形成泵的密封腔室。螺杆每转一周,密封腔内的液体向前推进一个螺距,随着螺杆的连续转动,液体螺旋形方式从一个密封腔压向另一个密封腔,最后挤出泵体。螺杆泵是一种新型的输送液体的机械,具有结构简单、工作安全可靠、使用维修方便、出液连续均匀、压力稳定等优点。

3.3日常生活的应用:蚊香的几何特征
将一单盘蚊香光滑面朝上,放置一水平面上,自上俯视,会观察到的蚊香平面图。将这条曲线单独绘制出来,并加上一定的标志,得到了蚊香香条曲线图(如图6示)。点O为直线AB与曲线AB若干交点中位于最中间的一个交点。曲线OA实际上是单盘蚊香的香条外侧边线。观察不同厂牌蚊香的实物,会发现其对应的OA曲线上,接近点的一段(图中以OP表示),也就是所谓“太极头”部位的曲线,在形状上各有不同,但对于剩下的一大段曲线PA,则具有这样的特征:曲线PA E任取一点Q,假使点Q可在曲线PA上移动,则点Q越接近点A,点Q与点O的直线距离(以r表示)越大;而且,每移动一定角度(以0表示),增加的值与该角度成正比。用学语言描述曲线QA的上述特征,可表示为:
△φ=k△θ,或φ=k△θ+C-----(1)
式(1)中,k和C均为恒定常数,若以点O为极点,建立极坐标,则选择适当方位的极轴,可以将式(1)转移为:
φ=kθ,θ∈[0,α]------(2)
式(2)中a为点A,即香条末端对应的极角。式(2)所描述的曲线一单擞蚊香香条外侧边线.实际上正是“阿基米德螺线”。
需要说明的是,式(2)所描述的只是蚊香“太极头”之外的香条曲线方程,由于不同厂牌蚊香的“太极头”没有统一固定的形状,所以无法对其作出确切的描述。同时,由于“太极头”一段香条的长度极短,因而其形状对蚊香香条长度的影响事实上也可以忽略不计。


もっと もっと つよくなりてぇ
回复

使用道具 举报

0

主题

122

帖子

697

积分

小学四年级

Rank: 3

积分
697
发表于 2014-10-23 15:57:58 | 显示全部楼层

回帖奖励 +1

路过,学习了~~~
回复

使用道具 举报

50

主题

1955

帖子

3568

积分

高中二年级

Rank: 5Rank: 5Rank: 5

积分
3568

活跃会员灌水之王最佳新人

发表于 2015-3-9 17:34:08 | 显示全部楼层
学习了
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc

关于我们 | 网站地图 | 我爱数学网 ( 沪ICP备16005585号-3  

GMT+8, 2019-11-22 00:02 征信网

快速回复 返回顶部 返回列表