“韩信点兵”里的数学智慧 - 数学史 我爱数学网-数学爱好者的家园-中国专业化的数学论坛之一

我爱数学网-数学爱好者的家园-中国专业化的数学论坛之一

查看: 449|回复: 0

[数学史话] “韩信点兵”里的数学智慧

[复制链接]

1237

主题

2995

帖子

10万

积分

超级版主

Rank: 8Rank: 8Rank: 8Rank: 8

积分
103772

优秀版主

QQ
发表于 2016-3-25 13:46:53 | 显示全部楼层 |阅读模式


秦朝末年,楚汉相争。有一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是,韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更认为韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步逼近,楚军乱作一团。交战不久,楚军大败而逃。
算法:  1.先算3、5、7的最小公倍数3*5*7=105
  2.再算符合除以3余2,除以5余3,除以7余2的最小值  除以3余2的数:5, 8, 11, 14, 17, 20, 23, 26…   除以5余3的数:8, 13, 18, 23, 28…  除以7余2的数:9,16,23,30…  由上得出除以3余2,除以5余3,除以7余2的最小值为23
  3.韩信原有1500名士兵,苦战一场死伤四五百。现剩余士兵应在1000-1100之间,并且现存的士兵数应可以被105整除并且余数是23.所以现存士兵数应该是105×10+23=1073人。中国有一本数学古书《孙子算经》也有类似的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”
答曰:“二十三。”
术曰:“三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。”
什么意思呢?用现代语言说明这个解法就是:   首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15。如果所求的数被3除余2,那么就取数70×2=140,140是被5与7整除而被3除余2的数。如果所求数被5除余3,那么取数21×3=63,63是被3与7整除而被5除余3的数。如果所求数被7除余2,那就取数15×2=30,30是被3与5整除而被7除余2的数。
140+63+30=233,由于63与30都能被3整除,所以233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2。所以233是满足题目要求的一个数。 105是3、5、7的公倍数,前面说过,凡是满足233加减105的整数倍的数都是符合题意的,因此依定理译成算式解为:  70×2+21×3+15×2=233  233-105×2=23
这就是有名的“中国剩余定理”,或称“孙子定理”,它和韩信点兵是一个道理。
获得金币的方式:“戳这里”
参与悬赏活动:“戳这里”
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc

关于我们 | 网站地图 | 我爱数学网 ( 沪ICP备16005585号-3  

GMT+8, 2019-11-22 01:02 征信网

快速回复 返回顶部 返回列表