1+1的来历 - 基础数学 我爱数学网-数学爱好者的家园-中国专业化的数学论坛之一

我爱数学网-数学爱好者的家园-中国专业化的数学论坛之一

查看: 938|回复: 10

[数学综合] 1+1的来历

[复制链接]

4

主题

52

帖子

244

积分

小学二年级

Rank: 2Rank: 2

积分
244
发表于 2014-10-7 17:34:57 | 显示全部楼层 |阅读模式
      哥德巴赫猜想当年徐迟的一篇报告文学,中国人知道了陈景润和哥德巴赫猜想。    那么,什么是哥德巴赫猜想呢?
    哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:
  (a)任何一个≥6之偶数,都可以表示成两个质数之和。
  (b)任何一个≥9之奇数,都可以表示成不超过三个的质数之和。
  这就是著名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×10的8次方以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
  从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。 “1+S”以及陈氏定理
  到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
  目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
  在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:
  1920年,挪威的布朗证明了“9 + 9”。
  1924年,德国的拉特马赫证明了“7 + 7”。
  1932年,英国的埃斯特曼证明了“6 + 6”。
  1937年,意大利的蕾西先后证明了“5 + 7”,“4 + 9”,“3 + 15”和“2 + 366”。
  1938年,苏联的布赫夕太勃证明了“5 + 5”。
  1940年,苏联的布赫夕太勃证明了“4 + 4”。
  1948年,匈牙利的瑞尼证明了“1 + C”,其中C是一个无穷大的整数。
  1956年,中国的王元证明了“3 + 4”。
  1957年,中国的王元证明了“3 + 3”和“2 + 3”。
  1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”,中国的王元证明了“1 + 4”。
  1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。
  1966年,中国的陈景润证明了 “1 + 2 ”。
  从1920年布朗证明“9+9”到1966年陈景润攻下“1+2”,历经46年。自“陈氏定理”诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。
         数学家对陈氏定理的质疑
  一、陈景润证明的不是哥德巴赫猜想
  陈景润与邵品宗合著的《哥德巴赫猜想》第118页(辽宁教育出版社)写道:陈景润定理的“1+1”结果,通俗地讲是指:对于任何一个大偶数N,那么总可以找到奇素数P',P",或者P1,P2,P3,使得下列两式至少一式成立:“N=P'+P" (A)   N=P1+P2*P3 (B)
  当然并不排除(A)(B)同时成立的情形,例如62=43+19,62=7+5X11。”
  众所周知,哥德巴赫猜想是指对于大于4的偶数(A)式成立,【1+2】是指对于大于10的偶数(B)式成立,两者是不同的两个命题,陈景润把两个毫不相关的命题混为一谈,并在申报奖项时偷换了概念(命题),陈景润也没有证明【1+2】,因为【1+2】比【1+1】难得多。
  二、陈景润使用了错误的推理形式
  陈采用的是相容选言推理的“肯定肯定式”:或者A,或者B,A,所以或者A或B,或A与B同时成立。 这是一种错误的推理形式,模棱两可,牵强附会,言之无物,什么也没有肯定,正如算命先生那样“:李大嫂分娩,或者生男孩,或者生女孩,或者同时生男又生女(多胎)”。无论如何都是对的,这种判断在认识论上称为不可证伪,而可证伪性是科学与伪科学的分界。相容选言推理只有一种正确形式。否定肯定式:或者A,或者B,非A,所以B。相容选言推理有两条规则:1,否认一部分选言肢,就必须肯定另一部分选言肢;2,肯定一部分选言肢却不能否定另一部份选言肢。可见对陈景润的认可表明中国数学会思维混乱,缺乏基本的逻辑训练。
  三、陈景润大量使用错误概念
  陈在论文中大量使用“充分大”和“殆素数”这两个含糊不清的概念。而科学概念的特征就是:精确性,专义性,稳定性,系统性,可检验性。而“充分大”,陈指10的50万次方,这是不可检验的数。殆素数指很像素数,实际上是合数,拿相与不像从事严格的证明,是小孩子的游戏。
  四、陈景润的结论不能算定理
  陈的结论采用的是特称(某些,一些),即某些N是(A),某些N是(B),就不能算定理,因为所有严格的科学的定理,定律都是以全称(所有,一切,全部,每个)命题形式表现出来,一个全称命题陈述一个给定类的所有元素之间的一种不变关系,适用于一种无穷大的类,它在任何时候都无区别的成立。而陈景润的结论,连概念都算不上。
  五、陈景润的工作严重违背认识规律
  在没有找到素数普遍公式之前,哥氏猜想是无法解决的,正如化圆为方取决于圆周率的超越性是否搞清,事物质的规定性决定量的规定性。
(哥德巴赫猜想传奇)王晓明1999,3期《中华传奇》责任编辑陶慧洁

回复

使用道具 举报

2

主题

8

帖子

92

积分

幼儿园

Rank: 1

积分
92
发表于 2014-10-7 18:41:10 | 显示全部楼层
太好了
[发帖际遇]: tom118 乐于助人,奖励 10 贡献. 幸运榜 / 衰神榜
回复

使用道具 举报

0

主题

304

帖子

1549

积分

初中一年级

Rank: 4Rank: 4

积分
1549
发表于 2015-1-30 11:07:23 | 显示全部楼层
来学习!
回复

使用道具 举报

50

主题

1955

帖子

3568

积分

高中二年级

Rank: 5Rank: 5Rank: 5

积分
3568

活跃会员灌水之王最佳新人

发表于 2015-3-9 19:09:24 | 显示全部楼层
长知识了
回复

使用道具 举报

0

主题

184

帖子

637

积分

小学四年级

Rank: 3

积分
637
发表于 2015-3-25 18:41:25 | 显示全部楼层
强烈支持楼主ing……
[发帖际遇]: 一个袋子砸在了 cindygeng 头上,cindygeng 赚了 3 金币. 幸运榜 / 衰神榜
回复

使用道具 举报

12

主题

164

帖子

581

积分

小学四年级

Rank: 3

积分
581
发表于 2015-8-20 13:49:11 | 显示全部楼层
回复

使用道具 举报

0

主题

10

帖子

38

积分

托儿所

Rank: 1

积分
38
发表于 2015-9-21 16:21:38 | 显示全部楼层
学习了...
回复

使用道具 举报

0

主题

71

帖子

325

积分

小学二年级

宇宙超级无敌管家婆

Rank: 2Rank: 2

积分
325
发表于 2015-10-4 20:23:11 | 显示全部楼层
自己也来学学
该吃吃  该喝喝  爱谁谁
回复

使用道具 举报

0

主题

10

帖子

38

积分

托儿所

Rank: 1

积分
38
发表于 2015-10-8 10:42:48 | 显示全部楼层
回复

使用道具 举报

0

主题

34

帖子

153

积分

小学一年级

Rank: 2Rank: 2

积分
153
发表于 2015-10-9 14:31:26 | 显示全部楼层
长知识了
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc

关于我们 | 网站地图 | 我爱数学网 ( 沪ICP备16005585号-3  

GMT+8, 2019-10-15 12:12 征信网

快速回复 返回顶部 返回列表