数学中的动态图像 - 前沿数学 我爱数学网-数学爱好者的家园-中国专业化的数学论坛之一

我爱数学网-数学爱好者的家园-中国专业化的数学论坛之一

查看: 555|回复: 1

[数学研究] 数学中的动态图像

[复制链接]

206

主题

340

帖子

8985

积分

版主

Rank: 7Rank: 7Rank: 7

积分
8985
发表于 2014-11-17 10:09:52 | 显示全部楼层 |阅读模式
你真的以为自己懂三角函数吗?

请听题:三角函数既然是函数,那它的自变量和因变量都是什么?

从这张图里可以很明显看到,所谓正弦函数,其实就是圆上任意一点的y坐标(红)和弧长(蓝)之间的关联。左图的蓝色弧长和右图的蓝线完全一样。

而弧长又和弧度是完全对应的。为什么高中老师不肯用经典的360度角而一定要教你奇怪的“弧度”?就是因为这个对应。1弧度就是长度为1个半径的弧所对应的角,π弧度就是正好半个圆——相应的,之所以 sinπ=0,正是因为当蓝线走了一个π(一个半圆)的时候,正好也走回到了 y = 0 的地方。

那余弦函数呢?

余弦函数就是圆上任意一点的x坐标和弧长之间的关联,只不过在画函数的时候,把圆上点的x坐标打了个弯,对应成了函数曲线上的y坐标,就像这张图里的蓝线那样。

为了体现余弦函数的这个对应,我们也可以直接把函数本身竖过来,就成了这样:

当然,这种对应也可以用在其它几何图形上,只不过就不如圆那么美丽了,比如下面这个丑陋的心形。


要不为什么说圆是最完美的身材!(并不是)

极坐标的魔法

如何把直角坐标变成极坐标?看我的:

这是什么黑魔法……

别急,听我解释,事情就是你看到的那样:

首先我们需要把函数沿直线 y = x 翻转。之所以要有这一步,是因为极坐标里我们很武断地把0度定义在了朝右。如果0度是(更自然的)朝上,那就不需要这一步了。

然后,我们把Y轴折弯过来,直到它缩成一个点。成功!

思路是这样的:直线在几何上可以认为是具有无限直径、无限曲率半径的一个圆,永远不向自身弯折。但如果我们逐渐降低曲率半径,从无限一直降到零,就等于是把Y轴变成一个逐渐缩小的圆、最后变成一个点。而原来直角坐标的“Y轴”所承载的信息,在转换中就逐渐移交给了极坐标的“角度”。

注意,这个转换体现的是极坐标和直角坐标之间不同的对应方式,是把一种对应变成了另一种对应,而不是说把同一个曲线从直角坐标表达式换成极坐标表达式。前后两个是不同的曲线。

(转载于果壳网)


[发帖际遇]: 何必在意NE 捡了钱没交公 威望 降了 2 . 幸运榜 / 衰神榜
回复

使用道具 举报

50

主题

1955

帖子

3568

积分

高中二年级

Rank: 5Rank: 5Rank: 5

积分
3568

活跃会员灌水之王最佳新人

发表于 2015-3-13 15:04:13 | 显示全部楼层
长知识了
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc

关于我们 | 网站地图 | 我爱数学网 ( 沪ICP备16005585号-3  

GMT+8, 2019-10-23 11:18 征信网

快速回复 返回顶部 返回列表